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The generic feature of traffic in a network of flowing electronic data packets is a phase transition from a
stationary free-flow phase to a continuously growing congested nonstationary phase. In the most simple
network of directed oriented square lattice we have been able to observe all crucial features of such flow
systems having nontrivial critical behavior near the critical point of transition. The network here is in the shape
of a square lattice and data packets are randomly posted with a rater at one side of the lattice. Each packet
executes a directed diffusive motion toward the opposite boundary where it is delivered. Packets accumulated
at a particular node form a queue and a maximum ofm such packets randomly jump out of this node at every
time step to its neighbors on a first-in-first-out basis. The phase transition occurs atrc=m. The distribution of
travel times through the system is found to have a log-normal behavior and the power spectrum of the load
time series shows 1/f-like noise similar to the scenario of Internet traffic.
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I. INTRODUCTION

The transport of matter and propagation of information in
biological, social, and electronic communication systems,
etc., remain significantly important in different branches of
physics, and more generally in natural science for many
years. Evidently the prime objective is to make the transport
or communication processes more efficient in these systems.
In particular, one aims at maximizing the flow at the same
time minimizing the delivery time and loss, and of course
maximizing robustness against attack and failure. The effect
of the local and global topological properties of the system
and the microscopic dynamic process involved with the flow
are considered as the two basic ingredients of these complex
dynamical processes.

Research on highway traffic as a field of applied physics
is already decades old. Study on information network traffic
is comparatively new. It is evident from empirical observa-
tion on internet trafficf1–4g and vehicular flowf6g in a net-
work of highways that both possess similarity in many re-
spects. In the highway network it was observed that on
increasing the vehicle density a well-defined transition oc-
curs at a critical density separating the free-flow phase and
the jammed phase. At the critical point the jam or congestion
occurs as back-propagating waves with fractal propertiesf5g.
In the internet network it is found that the ping-time statis-
tics, in which the time taken by a packet to move from
source to destination and back were measured, show critical
dynamics and a 1/f noise spectrum similar to the scenario of
vehicular trafficf1g.

Observation of real computer network traffic dynamics
also reveals the following behavior,sid the distribution of file
sizes is log normal;sii d the interarrival times have a power
law distribution; siii d traffic load time series data show
1/ f-type fluctuation near the critical point; and,sivd ‘‘Ping’’

experiment data show that round-trip timetL distribution has
a log-normal behavior.

However, the topological structures of the Internet and the
highway network are far from being similar. It has been ob-
served that the nodal degree distributionssthe degreek of a
node is the number of links meeting at itd of the Internetf7g
and the worldwide webf8g as well as many other real-world
networks have power law tails,Pskd,k−g, and cannot be
modeled by simple random graphs. This is in contrast to the
well-known random graphs introduced by Erdös and Rényi,
whose degree distribution is Poissonianf9g. Due to the ab-
sence of a characteristic value for the nodal degree these
networks are called scale-free networksf10–12g. Barabási
and Albert grew scale-free graphs where a fixed number of
vertices are added at each time and are linked to the growing
graph with a linear attachment probabilityf10g. On the other
hand the topological structure of a highway network may
show small-world behavior in some cases but its degree dis-
tribution could not be a power law for practical reasons.

So the question is whether the self-similarity and long-
range dependence of traffic flow and congestion are topo-
logical in nature or if they are caused only by the micro-
scopic dynamic properties associated with the generation and
flow of traffic, such as posting rate, fluctuations in posting
rate, or routing schemes.

Traffic systems usually involve queues and the simplest
information traffic system consisting of a random informa-
tion input and a buffer shows a phase transition behavior
when the buffer capacity is infinitef2g. When the mean input
rate is smaller than the maximum possible output rate, the
average accumulation of information at the buffer is finite
and this is called the “free” phase. As the mean input rate of
information is increased the average accumulation at the
buffer increases, and at a critical point the averaged accumu-
lation diverges. The critical point is defined by the simple
condition that the mean input rate is equal to the maximum
output rate.

This phase transition behavior is local and can occur in
any buffer system because of the general nonlinear response*Electronic address: manna@bose.res.in
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of the buffer. But the ping experiment indicates a phase tran-
sition of the whole network due to propagation of congestion
among jammed nodes and shows 1/f fluctuation at the criti-
cal point f2,3g. The whole system was also considered as a
vast ensemble of phase transition elements and the system
properties are the outcome of the interactions between these
individual elementsf13g.

In recent studies on different geometries, that is, on a
linear chainf14g, two-dimensional lattices, and a Cayley tree
f15g a sharp transition from the free to congested phase is
found for routing of packets through shortest paths. In the
linear chain the smallest buffer causes jammingf14g. In the
Cayley tree the role of the node at the top of the hierarchy is
crucial for congestion. Also in the case of two-dimensional
lattices it is observed that if the packet delivery capacity of
the nodes is fixed, or independent of the load on the node,
then congestion occurs above a specific value of the posting
rate r. Traffic flow has also been studied on scale-free net-
works f16g.

In this work we try to address this question of dependence
sor independenced of the network traffic flow on topological
features and on the details of the dynamic process associated
with the generation and flow of traffic. We took a simple
network of oriented square lattices and select random diffu-
sion along a preferred direction as the method of routing of
data packetssall of the same sized and show that this arrange-
ment could generate the main experimental findings of inter-
net traffic flow.

II. THE MODEL

An oriented square lattice of sizeL3L placed on the
x-y plane is the network in our model: the lattice sites are the
nodes and lattice bonds are the links of the networkssee Fig.
1d. The system has a preferential direction, called the down-
ward direction, imposed along the −y direction such that
packets from every site jump with a positive component
along the preferred direction. Every node has two neighbor-
ing nodes along the preferred direction which are situated at
the lower left sLL d and lower right sLRd positions. Data
packets are posted at a rater only on nodes of the top row of
the lattice aty=L. Similarly all nodes on the bottom row at
y=0 are considered as sinks where packets are delivered and

therefore disappear from the system. Although the data pack-
ets are distinguishable a packet is delivered at any arbitrary
sink. In general eachL2 nodes is a router which receives,
stores, and forwards packets along the preferred direction.
There is a limit to the forwarding capacity of each node; a
node can forward a maximum ofm data packets at a time.
Each of these data packets is forwarded to the LL or LR
nodes randomly with equal probability. Each node receives
packets from its two upward neighbors, places them in its
buffer maintaining a queue of lengthqisr ,td, and forwards a
maximum ofm packets at a time from the front of the queue
according to the first-in-first-outsFIFOd rule. We further as-
sume that the buffer capacity of each node is infinitely large
so that no packet is lost due to a filled-up buffer. A single
time step during the evolution of the system consists of up-
dating every node of the system for once.

The posting rater of data packets is the only control
parameter of the system. Therefore, at each time step, each
node of the top row receives a new data packet with a prob-
ability r. The free-flow phase is a stationary state where the
average fluxes of the inflow and outflow currents of data
packets balance. Once a specific value ofm is assigned, the
magnitudes of these currents can increase at most tom. This
implies that the critical posting raterc must be equal tom.
This is supported numerically for a number of values ofm.
In most of our calculations reported below we have usedm
=1.

The total numberNsr ,td=oi=1
L2

qisr ,td of data packets in
the network at timet is called the “load;” it fluctuates with
time but maintains a steady mean valueNsrd in the station-
ary free-flow statesFigs. 2 and 3d. For a posting rater.rc
the system switches over to a congested phase and theNsr ,td
increases indefinitely. Since packets are moving into the sys-
tem at a rate larger than the outflow rate, packets simply pile
up in the system and no flow balance is attained. The varia-
tion of Nsrd with r is studied. Different packets take differ-
ent travel times to reach their destinations. The probability
distribution of these travel times is also measured for differ-
ent r values. The nodal queue length distribution of the net-
work is studied for different posting rates.

III. RESULTS

The fluctuation of the mean load per node or the mean
queue lengthq̄sr ,td=Nsr ,td /L2 is observed to have a self-
similar fluctuation as shown in Fig. 2 forr=0.96 andL
=128. In Fig. 2sad Nsr ,td /L2 has been plotted with timet
over an interval of lengthDt=105. A small boxed region over
a time interval ofDt=104 from Fig. 2sad has been zoomed in
Fig. 2sbd using a vertical magnification 2.72 having the same
size as in Fig. 2sad. Similarly a boxed region over a time
interval of Dt=103 from Fig. 2sbd has been zoomed in Fig.
2scd using a vertical magnification 3.48 having the same size
as in Fig. 2sbd. It is evident from the three plots that apart
from the stochastic noise present in the system the fluctua-
tion of mean load is self-similar.

In addition the fluctuation of mean load per node becomes
stronger and more correlated whenr approaches the critical

FIG. 1. A configuration of the number of data packets at each
node of an 838 system with the posting rater=0.8 in the station-
ary state.
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posting raterc. For a smallr value the load fluctuates around
an average value and the fluctuations are also small. It means
that the correlation time is short, that is, the state of the
system at a certain time step has very little effect on the
states of the system a few time steps away. Asr→rc the
fluctuations in the mean load become increasingly stronger
and it spreads in a wider region indicating higher correlation
in the system. Nearrc a particular state of the system natu-

rally influences the states of the system far away from it. In
Fig. 3 we plotNsr ,td /L2 for four different posting ratesr
=0.80, 90, 0.93, and 0.96 over an interval of length 105 time
units and for the system sizeL=128. The width of fluctua-
tion wsrd=kq̄2sr ,tdl−kq̄sr ,tdl2 increases as posting rate in-
creases and also the fluctuation becomes more and more cor-
related.

When r is very small the number of packets posted per
time step is also very small and the system can deliver it very
quickly to the destination. No queue could be formed on the
nodes and a packet need not wait in any node while travel-
ing. This is a free-flow phase. But when the posting rater
increases, slowly queues are formed and a packet had to wait
in queues while traveling and this waiting time started con-
tributing to the travel time of a packet. But up to a certainr
value the queue length and hence the waiting time at the
nodes fluctuates around an average value, i.e., still the aver-
age delivery rate of the system and the average posting rate
are equal and there is no growing accumulation of packets in
the system. At this stage queues are formed on the nodes and
the average length of the queues increases withr but that
average value is not growing with time. But asr→rc the
posting rate becomes equal to the maximum delivery rate
scapacityd of the system and beyond that there will be grow-
ing accumulation of packets in the system indicating conges-
tion or jammed phase.

Though exactly atr=rc=m the balance of inflow and
outflow fluxes of data packet currents is maintained it is
observed that no stationary state is attained at this critical
point. This is because not all nodes of the bottom row aty
=1 receive exactly one data packet each at every time unit;
by fluctuation some nodes receive two and some other nodes
do not receive any packet at all. Since a node, even if it
received two data packets, can deliver at most one packet,
some packets must have to stay back in the system, ulti-
mately leading to a global congestion. How does the mean
load per node increase with time at the nonstationary state of
r=rc? It is observed that the variation is parabolic, i.e.,

FIG. 2. Self-similar fluctuations of the average load per site
Nsr ,td /L2 with time t are displayed.sad Average load of a system of
size L=128 in the stationary state is plotted for the posting rater
=0.96 over a range of 100 000 time units.sbd Magnification of the
boxed region insad with the horizontal and vertical scale factors 10
and 2.72, respectively.scd Magnification of the boxed region insbd
with the horizontal and vertical scale factors 10 and 3.48,
respectively.

FIG. 3. These plots show that
as the posting rater approaches
the critical posting raterc the
fluctuation of the average load per
site increases and also long-range
correlation develops. For a system
of size L=128, average load
Nsr ,td /L2 is plotted for 100 000
time steps for the posting ratessad
0.80 sbd 0.90, scd 0.93, andsdd
0.96, respectively.
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q̄src,td, t1/2. However, for r.rc the growth is linear in
time: q̄src,td, t.

The time averaged load per nodeNsrd /L2 in the free-flow
stationary state is calculated for different values of the post-
ing ratesr and plotted in Fig. 4sad for L=64. For small
values ofr the load is small and increases slowly. However,
when r approachesrc the rate of increase is very fast and
diverges. This is seen more explicitly in Fig. 4sbd where
Nsrd /L2 is plotted againstrc−r on a double logarithmic
scale and a straight line is obtained forr close torc. The
slope of the straight line is 0.98, implying that the load may
vary as

Nsrd/L2 , src − rd−1. s1d

The queue length distributionPsqd of the system, which is
analogous to the jam size distribution in the highway net-
work, gives a better understanding of the packet flow sce-
nario. Compared to single queue theories, here we have
many interacting queues in which at each time step a single
packet can hop from any queue to any of the two neighbor-
ing queues. Thus here apart from the source nodes all other
nodes are placed equivalently. They all have only two neigh-
boring nodes as sources of data packets. In Fig. 5 we show
the plot ofPsqd vs q for r=0.97, 0.98, and 0.99 forL=64 on
a semilogarithmic scale indicating that the intermediate re-
gion of the distribution follows the exponentially decaying
distribution expf−q/q0srdg in general. It has been observed
that the dependenceq0srd,src−rd−1 is followed very nicely.
The average queue lengthkqsr ,ydl is also measured as a
function of they coordinate and found to vary assrc−rd−1

independent ofy except over a small region near the top
level.

The travel timet of a data packet is defined as the time
spent by the packet in the system, which is obviously the
difference between the delivery and posting times. Each data
packet is given a label and with each node a queue list is
associated containing the labels of the data packets in this
queue. If the queue length at a node is greater thanm then
the first m packets from the front of the queue are deleted
and the queue is shiftedm locations to the front. Each of
thesem packets is then randomly routed to one of the LL or
LR nodes. Such a packet is placed at the end of the queue in
the new node by the FIFO rule. Intuitively, it is easy to
understand that for very low posting ratesr→0 every data
packet makes a hop at every time instant and therefore allt
values are the same and equal toL. Consequently,
Pst ,r ,Ldr→0=dst−Ld. However, asr increases the queue
lengths become larger; as a result travel time increases and
its distribution gains a finite width. We have studied in detail
the distribution of travel times and its dependence onr andL
sFig. 6d andPst ,r ,Ld is observed to follow a combined scal-
ing form overr andL as

Pst,r,Ldsrc − rd−1L0.585, G„flogstd − tmgsrc − rd0.04L0.48
….

s2d

The scaling functionGsxd is seen to follow a log-normal
function like

Gsxd =
1

xsÎ2p
expS−

sln xd2

2s2 D . s3d

IV. POWER-SPECTRAL ANALYSIS OF NETWORK TIME
SERIES

The fluctuation of mean queue length per node,q̄sr ,td,
with time depends on the posting rate. In the free-flow sta-
tionary state the autocorrelation function ofq̄sr ,td is defined
as

FIG. 4. sad Plot of the average load per siteNsrd /L2 with r for
L=64 and form=1. The growth of average load diverges at the
critical point of phase transition atrc=1. sbd Plot of the average
load again but with 1−r and on a double logarithmic scale; the
slope gives the value of the exponentx<0.98.

FIG. 5. Queue length distribution for a 64364 lattice with r
=0.97, 0.98, and 0.99. Plots indicate exponential decay.
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Csr,td =
kq̄sr,t8dq̄sr,t + t8dl − kq̄sr,t8dl2

kq̄2sr,t8dl − kq̄sr,t8dl2 . s4d

The Fourier transform of the autocorrelation functionCsr ,td
is known as the spectral density or power spectrumSsfd de-
fined as

Ssr, fd =E
−`

`

e−i f tCsr,tddt. s5d

For a time series which has no temporal correlation, a plot of
Ssfd againstf is independent off. For some other time data
series, the power spectrum may vary as a power law:Ssfd
, f−f. In this case the spectral exponentf characterizes the
nature of persistence,f=2 indicates zero correlation associ-
ated with Brownian motion,f.2 indicates positive correla-
tion and persistence andf,2 represents negative correla-
tion and anti-persistence.

The autocorrelationCsr ,td function of the mean queue
length in the stationary state is plotted in Fig. 7sad on a
semilogarithmic scale up tot=4096 for three values of the
posting rater=0.96, 0.97, and 0.98 calculated on a system
size L=64. The same calculations have also been repeated
for even smaller values ofr down to 0.75 at intervals of
0.05. Fourier transformations of these correlation functions
are done usingXMGRACE and the power spectrumSsfd is
plotted vsf on a double logarithmic scale in Fig. 7sbd for all
three values of posting rates. The intermediate regimes of the
curves are quite straight, indicating a power law variation of
the power spectrum:Ssfd, f−fsrd. From Fig. 7sbd we mea-
sure the slopes as all nearly the same andfsrd<1, indicat-
ing 1/f noise near the critical posting raterc irrespective of
the precise value of the posting rate.

We also studied the spectral analysis of the overall
throughput time signal. The overall throughput is defined as
the mean numberDsr ,td of packets delivered per site of the
bottom row of the lattice per unit time. This is naturally a
fluctuating variable whose time average is equal to the input
posting rate. A time displaced correlation of the fluctuating
Dsr ,td time series shows an exponential decay whose spec-
tral analysis yields a power law decay of the power spectrum
but with a different exponent:Ssfd~ f−0.66.

Similar autocorrelation functions and associated power
spectra are also calculated for the fluctuation of the length of
a single queueqisr ,td. The power spectrum is also observed
to follow a power law with the spectral exponent value
nearly equal to 1.

Finally the undirected version of this problem has also
been studied on the square lattice. In this case the data pack-
ets are posted at the nodes on the middle rowy=L /2 and are
delivered at the nodes on the top row aty=L and the bottom
row y=1 with periodic boundary conditions applied along
thex axis. Each packet executes a simple noninteracting ran-
dom walk, i.e., for each step it selects one of the four neigh-
boring nodes randomly with uniform probability and jumps
to that site. As before a similar phase transition is observed
from a free-flow state to a congested phase at a specific post-
ing raterc. However, unlike in the previous model, the criti-
cal raterc→0 as 1/L. This is because a large number of
packets simply pile up at the middle line for all values of the
posting rates greater than 1/L. Travel times of packets again
follow log-normal distributions and the power spectrum also
follows a similar power law.

V. CONCLUSION

The properties of the traffic of the flow of data packets on
a model network of an oriented square lattice with random

FIG. 6. Scaling plot of the data for the distribution of travel
timesPst ,r ,Ld on systems of sizesL=32 and 64 for posting rates
0.95, 0.97, and 0.99. The scaled plot fits nicely with a log-normal
function.

FIG. 7. Plot ofsad correlation functionCstd vs t on a semiloga-
rithmic scale andsbd power spectrumSsfd vs f on a double loga-
rithmic scale for the posting ratesr=0.96 sdot-dashedd, 0.97
sdashedd, and 0.98ssolidd lines for a system sizeL=64.
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routing scheme largely consistent with the real-world inter-
net and vehicular traffic flow behaviors. First, it describes the
transition from a free to a congested phase with increase of
the density of packets separated by a well-defined critical
posting rate. Second, it produces a self-similar nature of the
network workload time series. Third, the long-tailedslog-
normald nature of the travel-time distribution is reproduced.
Fourth, the power-spectral analysis shows 1/f-type noise,

confirming long-ranged correlation in the network load time
series near criticality.
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